The Pinelands Protection Program K/C Water Management

Summary of April meeting et al with experts and continued refinement on an approach

8/26/16

Larry Liggett Director of Land Use

NEW

BACKGROUND

Study Overview Current Methods Discussion with Experts

ASSESSING REGIONAL IMPACTS

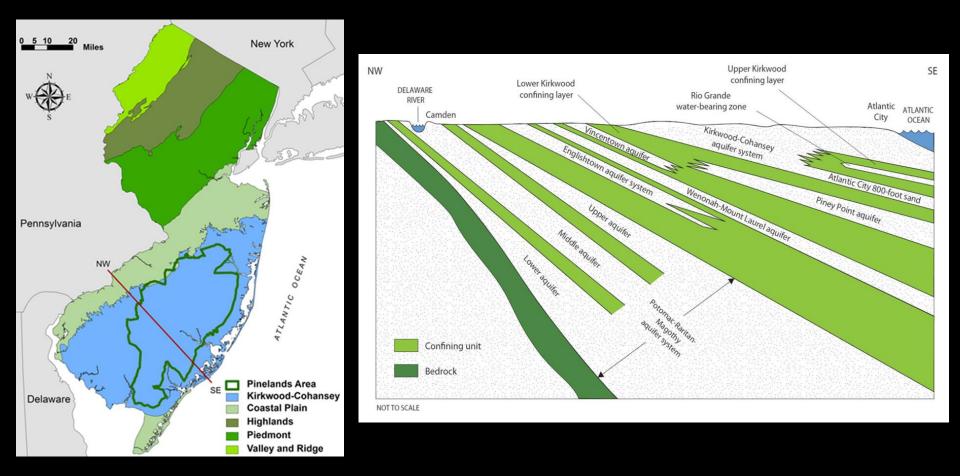
Overview Max. Percent Basin Recharge Wetland Vulnerability Index Low-Flow Margin

ASSESSING LOCAL IMPACTS

Overview Cone of Depression Model (Thiem)

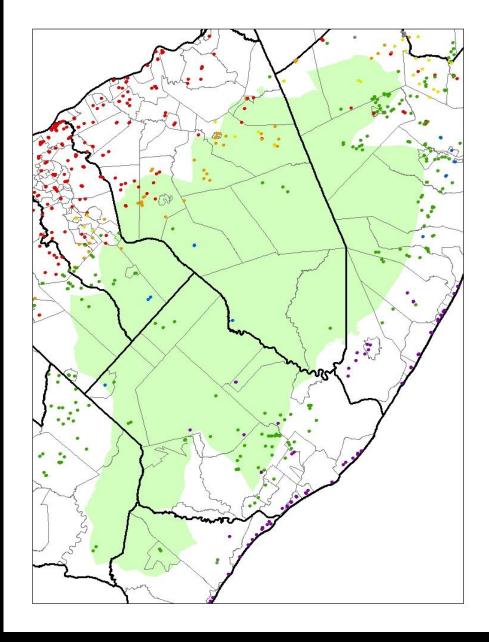
ON-GOING ISSUES

Recharge Aquifer Storage & Recovery Mitigation

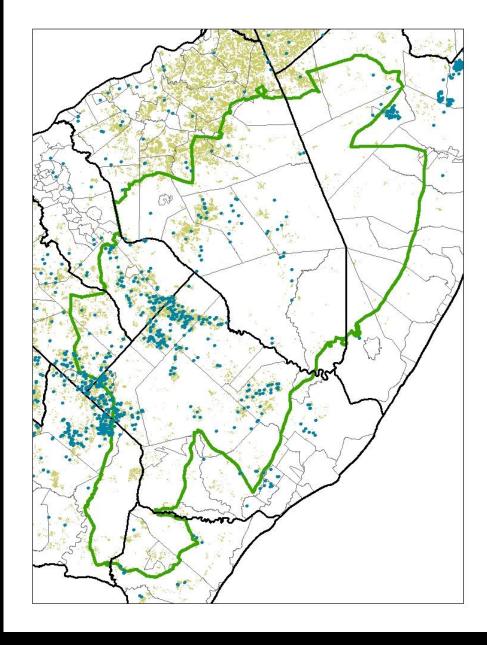

CONCLUSION

The Kirkwood/Cohansey Project

- <u>\$5 m State Legislation</u>: "...determine how future water supply needs will be met while protecting the Kirkwood-Cohansey aquifer system and while avoiding any adverse ecological impacts."
- Where is sewer and water permitted in the CMP?
 - 111,000 acres in RGA, Pinelands Towns & Villages
 - Serve upwards of 130,000 new homes (35 mgd of water) plus non-residential


BACKGROUND <u>Study Overview</u> \rightarrow Current Methods \rightarrow Discussion with Experts

The Kirkwood/Cohansey Aquifer


BACKGROUND <u>Study Overview</u> \rightarrow Current Methods \rightarrow Discussion with Experts

Public Water Supply Wells in the Pinelands

ASSESSING REGIONAL IMPACTS

Agricultural Wells in the Pinelands

ASSESSING REGIONAL IMPACTS

Context: Wells in the Pinelands

• Current:

 100 million gallons/day (mgd) or, the equivalent of 100 individual mgd wells

• Future:

- 40 mgd or, the equivalent of 40 individual mgd wells
 4% of daily recharge in Pinelands
- Total:
 - 140 mgd or, the equivalent of 140 individual mgd wells
 - 10% of daily recharge in Pinelands

ASSESSING REGIONAL IMPACTS

Current CMP K/C Regulations

- Avoid Inter-basin transfer of water
- No water export beyond 10 miles of boundary
- Include:
 - Water-saving devices and other conservation steps
 - Minimize impacts through well design
 - Distribution system loss reduction
- Permit only if:
 - No viable alternative, or
 - No adverse local or regional ecological impact (this assessment is limited by the absence of specificity and of tools)

BACKGROUND

Study Overview \rightarrow <u>Current Methods</u> \rightarrow Discussion with Experts

Summary of Discussions with Experts (discussion leaders at one meeting noted below)

- REGIONAL IMPACT CONTROLS (Watershed)
 - Stream Flow Low Flow Margin: Jeff Hoffman, NJ DEP
 - Maximum % of Recharge: Dan Van Abs, Rutgers University
 - Wetlands Vulnerability/Gompertz: Bob Nicholson, USGS
- LOCAL IMPACT CONTROL (wetlands)
 - Cone of Depression Model (Thiem): Bob Nicholson, USGS
- IMPLEMENTING THE CONTROLS
 - Basin Size Selection for Regional Impacts: Joseph Sosik, PC
 - Recharge Accompany Withdrawals: Jeff Fischer, USGS

BACKGROUND

Study Overview \rightarrow Current Methods \rightarrow Discussion with Experts

BACKGROUND

Study Overview Current Methods Discussion with Experts

ASSESSING REGIONAL IMPACTS

Overview Max. Percent Basin Recharge Wetland Vulnerability Index Low-Flow Margin

ASSESSING LOCAL IMPACTS

Overview Cone of Depression Model (Thiem)

ON-GOING ISSUES

Recharge Aquifer Storage & Recovery Mitigation

CONCLUSION

Maximum Percentage of Recharge Dan Van Abs, Rutgers University

- Long-term recharge is a good proxy for stream flow in a region where <u>most</u> annual average stream flow is derived from ground water.
- Which recharge to use as a maximum?
 - 5% of drought recharge can be removed from a basin (insufficient for an average water supply well)
 - 10% of average recharge (what staff has been using)

ASSESSING REGIONAL IMPACTS

Maximum Percentage of Recharge

• <u>Key points</u>:

- Percentage of average annual does not reflect droughts
- Percentage of drought flow too restrictive
- Average annual has been used by the PC for years, but without a scientifically based safe withdrawal limit
- K/C study can provide specific safe withdrawal limits
- <u>Work involved</u> (if selected)
 - Select a practical measure
 - Set safe withdrawal limit

ASSESSING REGIONAL IMPACTS

Wetlands Vulnerability Index Bob Nicholson, USGS

- Based on the PC funded study by USGS Charles and Nicholson, 2012
- Estimates the percentage of wetlands in watersheds that experience reductions in water levels of 5, 10, 15 and 30 centimeters based on <u>varying</u> well withdrawals.
- Example:

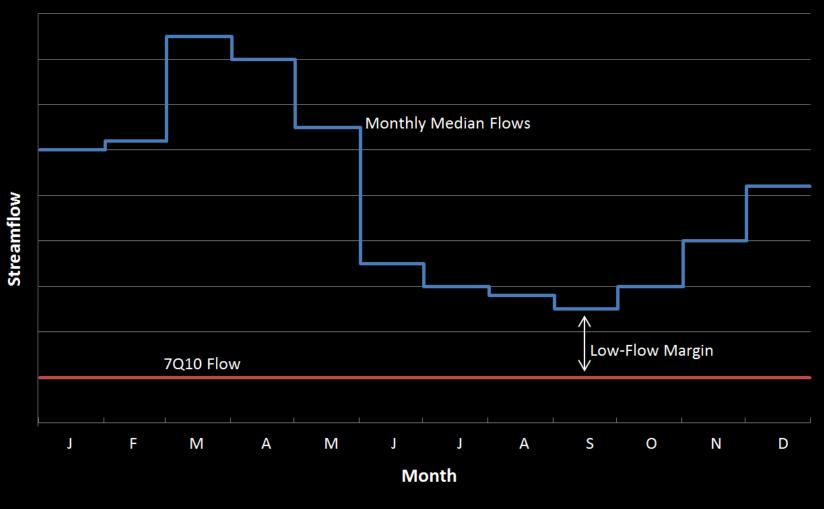
Area		Impact of Actual Usage Wetlands Drawdown:		
	Net Withdrawal (MGD)	>= 5 cm	>= 15 cm	>= 30 cm
Hammonton Creek	1.5	73.4%	67.2%	56.2%

ASSESSING REGIONAL IMPACTS

Wetlands Vulnerability Index

• <u>Key points</u>:

- Predicts both regional and local impacts
- No recommendation for regional withdrawal limits
- Problematic as it is built upon multiple, layered assumptions
- A good planning tool, but probably not firm enough for regulatory purposes
- <u>Work involved</u> (if selected):
 - Gather the necessary data to run the model
 - What are the safe withdrawal limits (regional and local)


ASSESSING REGIONAL IMPACTS

The Low-Flow Margin (LFW) Jeffery Hoffman, DEP

- The low-flow margin is the difference between the September low flow and the 7Q10 drought flow (the lowest 7-day average flow that occurs (on average) once every 10 years.)
- A set percentage of this margin can be safely diverted thereby minimizing impacts

ASSESSING REGIONAL IMPACTS

The Low-Flow Margin

ASSESSING REGIONAL IMPACTS

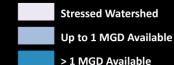
Devising a Low-Flow Threshold

- How much of the LFM should be available?
 - NJ DEP has researched 10 streams state-wide for how much can be withdrawn:
 - Using currently "stressed" areas. (Results: 20-30% max.)
 - Looking at ecological flow goals (Results: 30-40% maximum)
- Should the % vary by area sensitivity?
- What size basins should it apply to?

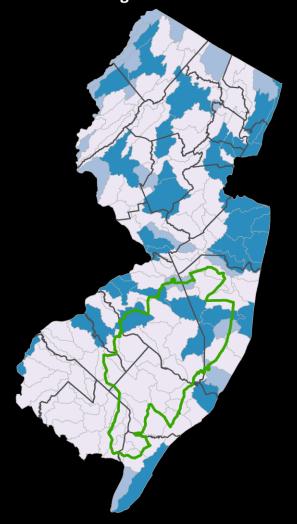
ASSESSING REGIONAL IMPACTS

Devising a Low-Flow Threshold

Examples:


• NJ DEP?

- 25% of the LFM state-wide?
- Use Large basins? (published data)
- Highlands
 - By area:
 - Protection Zone = 5% of the LFM
 - Conservation Zone = 5%/10% of the LFM
 - Existing Community Zone = 20% of the LFM
 - Uses Small basins (severely limits new wells)


ASSESSING REGIONAL IMPACTS

DEP: 25% of Low-Flow of Large Basins

Current Remaining Available Water

Full Allocation Remaining Available Water

ASSESSING REGIONAL IMPACTS

The Low-Flow Margin

- Key points:
 - Consistent with results of K/C ecological studies
 - Better than just using an average or any particular low flow like the 7Q10,
 - Note: maintaining passing flow (a NJ DEP requirement) is a necessary complementary tool to address severe droughts
 - Basin size needs to be selected
- Work involved:
 - How relevant is the 20-25% threshold to the LFM in the Pinelands?
 - Should the % vary by management area?

ASSESSING REGIONAL IMPACTS

Regional Approach: Basin Sizes Joseph Sosik, NJ Pinelands Commission

- "Small" Basins (HUC 14)
 - 229 with area inside PA
 - Average 9 square miles

• "Large" Basins (HUC 11)

- 37 with area inside PA
- Average 65 square miles

Regional Approach: Basin Sizes

- Key points:
 - Small basins not feasible/practical for wells
 - Large basins are better suited for the large K/C surface aquifer
 - NJ DEP has published large basin analyses
 - Boundaries of Pinelands watersheds imprecise, therefore better to go with bigger basins
- Work involved:
 - Select larger basins; use DEP data

ASSESSING REGIONAL IMPACTS

BACKGROUND

Study Overview Current Methods Discussion with Experts

ASSESSING REGIONAL IMPACTS

Overview Max. Percent Basin Recharge Wetland Vulnerability Index Low-Flow Margin

ASSESSING LOCAL IMPACTS

Overview Cone of Depression Model (Thiem)

ON-GOING ISSUES

Recharge Aquifer Storage & Recovery Mitigation

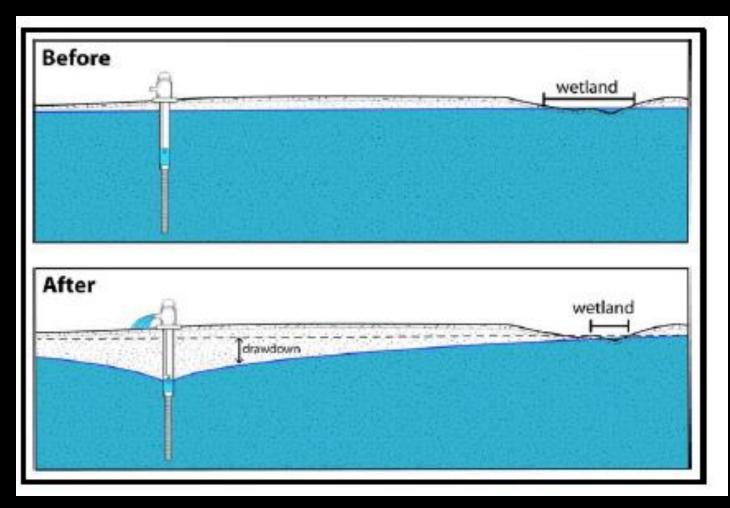
CONCLUSION

Managing Local Impacts

Goal: Better Measure Impacts of pumping near wetlands

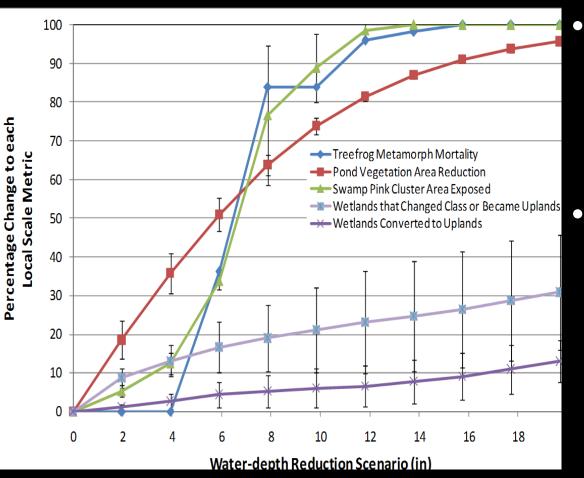
- What new ecological metrics can we derive from the K/C study?
 - Maximum drawdown thresholds
- Can we practically regulate with these metrics?
 - Cone of depression model (Thiem) as a screen coupled with enhanced pump tests

ASSESSING LOCAL IMPACTS <u>Overview</u> → Cone of Depression Model (Thiem)


Cone of Depression Model (Thiem) Bob Nicholson, USGS

 A published model (by Gunther Theim) was "enhanced" to provide a better match to the MODFLOW technique for use throughout the Pinelands where mod flow is not currently available

• Very comparable results were achieved, except in areas with multiple clay layers


ASSESSING LOCAL IMPACTS Overview \rightarrow Cone of Depression Model (Thiem)

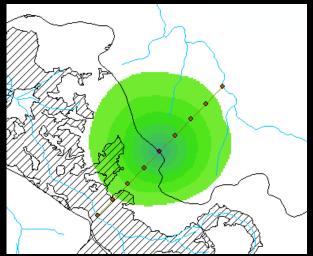
Cone of Depression

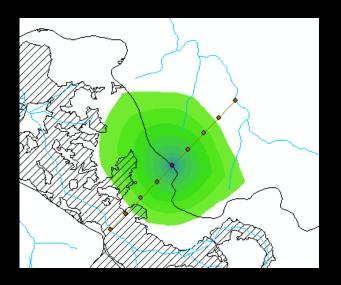
ASSESSING LOCAL IMPACTS Overview \rightarrow Cone of Depression Model (Thiem)

Maximum Drawdown: Some Wetlands more sensitive than others

ASSESSING LOCAL IMPACTS Overview \rightarrow Cone of Depression Model (Thiem)

Ponds & Pine Barrens Tree Frogs: Max 3-4" drawdown Other wetlands: Max 6" wetland




Measuring Drawdown Impacts

- MODFLOW Model

 Complex, needs lots of data
 So called "gold standard"
- Cone of Depression Model (Thiem)
 - Simple
 - Applicable everywhere, except where clay is prevalent
 - Less accurate than MODFLOW

ASSESSING LOCAL IMPACTS Overview \rightarrow <u>Cone of Depression Model (Thiem)</u>

Cone of Depression Model (Thiem)

- Key points:
 - Purveyors are amenable to using the tool
 - Probably use as a screening tool
 - Cone of depression modeling first
 - Then, Enhanced Well testing to validate
- Work involved:
 - Set limits, e.g. do not use where clay prevalent
 - Test more situations where have MODFLOW
 - Extend duration of well pump tests

ASSESSING LOCAL IMPACTS

Overview \rightarrow Cone of Depression Model (Thiem)

BACKGROUND

Study Overview Current Methods Discussion with Experts

ASSESSING REGIONAL IMPACTS

Overview Max. Percent Basin Recharge Wetland Vulnerability Index Low-Flow Margin

ASSESSING LOCAL IMPACTS

Overview Cone of Depression Model (Thiem)

ON-GOING ISSUES

Recharge Aquifer Storage & Recovery Mitigation

CONCLUSION

Recharge - Water Quality

- Underground storage of water can be used in two ways:
 - ASR (Aquifer Storage and Recovery) potable water from wet periods to supplement <u>dry</u> periods , or
 - Treated wastewater for mitigation in basins over the limit (LFM)

ASSESSING LOCAL IMPACTS

<u>Water Quality</u> \rightarrow Recharge \rightarrow Uses

Groundwater Recharge Jeff Fischer, USGS

- Key points:
 - Avoid areas with clay layers (e.g., Hammonton, Buena)
 - Unregulated contaminants are a concern to water quality
 - Maintenance is important
 - Injection rates are much lower than withdrawal rates
 - Concerns with surface- and waste-water fouling, geochemical reactions, and contamination
 - A possible mitigation tool in impacted basins
- Work involved:
 - What level of remaining pollutants is acceptable?
 - Can this level be feasibly attained?

ASSESSING LOCAL IMPACTS

Water Quality \rightarrow <u>Recharge</u> \rightarrow Issues

BACKGROUND

Study Overview Current Methods Discussion with Experts

ASSESSING REGIONAL IMPACTS

Overview Max. Percent Basin Recharge Wetland Vulnerability Index Low-Flow Margin

ASSESSING LOCAL IMPACTS

Overview Cone of Depression Model (Thiem)

ON-GOING ISSUES

Recharge Aquifer Storage & Recovery Mitigation

CONCLUSION

Tying it All Together

Current CMP	Direction for K/C Amendments		
 Well location guidelines: 300' from wetlands Allowed in any Pinelands Management Area Allowed anywhere in basin 	 Well location guidelines: Cone of depression model (Thiem) sets general buffer Allowed in RGA, Towns, and Villages Priority of placement near bottom of basin 		
2. No harm to wetlands (how determine?)	2a. Cone of depression model screening 2b. Minimum 3 day well test with piezometers in wetlands		
3. 10% basin withdrawal	3. 20% - 25% LFM of large basins		
4. Some conservation measures	4. Rigorous conservation measures		
5. Well size: no limit	5. Limit well size to , e.g. 1 mgd		
6. Alternatives: "show" K/C as last resort	6. Consider more analysis of alternatives (e.g., Del. River water)		

Conclusion